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Abstract Cantor-type sets are constructed as the intersection of the level domains for
simple sequences of polynomials. This allows to obtain Green functions with various
moduli of continuity and compact sets with preassigned growth of Markov’s factors.

Keywords Green’s function · Modulus of continuity · Markov’s factors

Mathematics Subject Classifications (2010) 31A15 · 41A10 · 41A17

1 Introduction

If a compact set K ⊂ C is regular with respect to the Dirichlet problem then the
Green function gC\K of C \ K with pole at infinity is continuous throughout C. We
are interested in analysis of a character of smoothness of gC\K near the boundary of
K. For example, if K ⊂ R then the monotonicity of the Green function with respect
to the set K implies that the best possible behavior of gC\K is Lip 1

2 smoothness.
An important characterization for general compact sets with gC\K ∈ Lip 1

2 was found
in [20] by Totik. The monograph [20] revives interest in the problem of boundary
behavior of Green functions. Various conditions for optimal smoothness of gC\K

in terms of metric properties of the set K are suggested in [7], and in papers by
Andrievskii [2, 3]. On the other hand, compact sets are considered in [1, 8] such that
the corresponding Green functions have moduli of continuity equal to some degrees
of h, where the function h(δ) = (log 1

δ
)−1 defines the logarithmic measure of sets. For

a recent result on smoothness of gC\K0 , where K0 is the classical Cantor ternary set,
see [15].

Here the Cantor-type set K(γ ) is constructed as the intersection of the level
domains for a certain sequence of polynomials depending on the parameter

A. P. Goncharov (B)
Department of Mathematics, Bilkent University, Ankara, Turkey
e-mail: goncha@fen.bilkent.edu.tr



A.P. Goncharov

γ = (γn)
∞
n=1. In favor of K(γ ), in comparison to usual Cantor-type sets, it is weakly

equilibrium in the following sense.
Consider a Cantor-type set K = ∩∞

s=0 Es, where E0 = [0, 1], Es is a union of 2s

closed intervals I j, s of positive length, and Es+1 is obtained by deleting an open
subinterval from each I j, s for 1 ≤ j ≤ 2s. Perhaps the lengths of deleted subintervals
are different. Given s ∈ N, let us uniformly distribute the mass 2−s on each I j,s for
1 ≤ j ≤ 2s. Let us denote by λs the normalized in this sense Lebesgue measure on
the set Es. Then, for our case, λs converges in the weak∗ topology to the equilibrium
measure μK(γ ) of the set K(γ ). This is not valid for geometrically symmetric Cantor-
type sets (Section 6). If all intervals (I j,s)

2s

j=1 have the same length, that is λs is the
normalized in the usual sense Lebesgue measure on Es, then w∗ − lim λs coincides
with the Cantor–Lebesgue measure λK. Then the measures μK and λK are essentially
different. Makarov and Volberg proved in [12] for the classical Cantor set K0 that the
carrier of μK0 has the Hausdorff dimension smaller than log 2/ log 3. Since λK0 is just
the Hausdorff measure corresponding to this number, the measures λK0 and μK0 are
mutually singular. For a treatment of a more general case we refer the reader to
Chapter IX in [10], see also [4, 21].

Different values of γ provide Green’s functions with diverse moduli of continuity
(Section 8).

In Section 9 we estimate Markov’s factors for the set K(γ ) and construct a set with
preassigned growth of subsequence of Markov’s factors.

For basic notions of logarithmic potential theory we refer the reader to [10, 14, 17].
We use the notation | · |K for the supremum norm on K, log denotes the natural

logarithm, 0 · log 0 := 0. By Pn we denote the set of all holomorphic polynomials of
degree at most n.

2 Construction of K(γ )

Suppose we are given a sequence γ = (γs)
∞
s=1 with 0 < γs < 1/4. Let r0 = 1 and rs =

γs r2
s−1 for s ∈ N. We define inductively a sequence of real polynomials: let P2(x) =

x(x − 1) and P2s+1 = P2s(P2s + rs) for s ∈ N. By that we have a geometric procedure
to define new (with respect to P2s) zeros of P2s+1 : they are abscissas of points of
intersection of the line y = −rs with the graph y = P2s .

We begin with an elementary lemma which will justify the construction.

Lemma 1 All critical points of P2s are decomposed into two groups: 2s−1 points of
minimum with equal values P2s = −r2

s−1/4 and 2s−1 − 1 points of local maxima with
positive values of P2s . Thus all zeros of P′

2s are simple.

Proof The proof is by induction on s. If s = 1 then the polynomial P2 has no local
maximum, so we begin from s = 2 for the basis case. Clearly, the polynomial P4(x) =
(x2 − x)(x2 − x + r1) with r1 = γ1 ∈ (0, 1/4) satisfies the statement. Suppose it is valid
as well for P2s . Since P′

2s+1 = P′
2s(2 P2s + rs), the set of critical points of P2s+1 consists

of the critical points of P2s and the solutions of the equation 2 P2s + rs = 0.
Suppose x is a point of minimum of P2s . Then P2s(x) = −r2

s−1/4 and, by the choice
of the sequence γ , P2s(x) + rs = r2

s−1(γs − 1/4) < 0. From this, P2s+1(x) > 0. Besides,
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P′′
2s(x) > 0, by the second derivative test. Therefore, P′′

2s+1(x) = P′′
2s(x)[2 P2s(x) +

rs] + 2[P′
2s(x)]2 = P′′

2s(x)r2
s−1(γs − 1/2) < 0, so P2s+1 has a local maximum at x.

Similarly, if P2s has a local maximum at x then P2s(x) > 0, by the inductive
hypothesis. Here, P2s+1(x) > 0 and P′′

2s+1(x) < 0, since P′′
2s(x) < 0. It follows that the

polynomial P2s+1 has a local maximum with a positive value at any critical point of P2s .
It remains to consider the solutions of the equation 2 P2s + rs = 0. By the

inductive hypothesis, the polynomial P2s has 2s−1 points of minimum with equal
values −r2

s−1/4, whereas at all local maxima P2s is positive. Therefore the line
y = −rs/2 intersects the graph of P2s at 2s distinct points. For each such point
x we have P′′

2s+1(x) = 2[P′
2s(x)]2 > 0, so P2s+1 has a minimum at x with the value

P2s+1(x) = −rs/2 · (rs − rs/2) = −r2
s /4, which is the desired conclusion.

The total number of critical points of P2s+1 that we considered above is
2s−1 + 2s−1 − 1 + 2s = 2s+1 − 1. Therefore, P2s+1 has no other critical points and all
zeros of P′

2s+1 are simple. 	


Let Es denote the set {x ∈ R : P2s+1(x) ≤ 0}. Thus, E0 = [0, 1] and Es = {x ∈ R :
−rs ≤ P2s(x) ≤ 0} for s ∈ N. Lemma 1 and the inequality rs < r2

s−1/4 imply that the
set Es consists of 2s disjoint closed basic intervals I j,s. Clearly, Es+1 ⊂ Es. Set K(γ ) =
∩∞

s=0 Es.

3 Location of Zeros

Let l j,s denote the length of the basic interval I j,s. In general, the lengths l j,s of
intervals of the same level are different, however max1≤ j≤2s l j,s → 0 for s → ∞, as
we will show in this section.

For fixed s ∈ N, we enumerate the intervals (I j,s)
2s

j=1 from the left to the right.
For example, I1,3 = [0, l1,3], I2,3 = [l1,2 − l2,3, l1,2], I3,3 = [l1,1 − l2,2, l1,1 − l2,2 + l3,3],
I4,3 = [l1,1 − l4,3, l1,1], etc.

Let us decompose all zeros of P2s into s groups. Let x1 = 0, x2 = 1 and
X0 = {x1, x2}. For k ∈ N the set Xk = {x : P2k(x) + rk = 0} consists of all zeros
of P2k+1 that are not zeros of P2k . Thus, X1 = {x3, x4} = {l1,1, 1 − l2,1}, · · · , Xk =
{x2k+1, · · · , x2k+1} = {l1,k, l1,k−1 − l2,k, · · · , 1 − l2k,k}. Set Ys = ∪s

k=0 Xk. Then P2s(x) =∏
xk∈Ys−1

(x − xk).

Each x ∈ Xs has the representation x = li1,q1 − li2,q2 + · · · + (−1)m+1lim,qm with 0 ≤
q1 < q2 < · · · < qm = s. The first indices (ik)

m
k=1 are uniquely defined by the set

(qk)
m
k=1.

Our next goal is to express the values of x ∈ Xs in terms of the function u(t) = 1
2 −

1
2

√
1 − 4t with 0 ≤ t ≤ 1

4 . Clearly, u(t) and 1 − u(t) are the solutions of the equation
P2(x) + t = 0. Given s ∈ N, let us consider the expression

x = f1(γ1 · f2(γ2 · · · fs−1(γs−1 · fs(γs)) · · · ), (1)

where fk = u or fk = 1 − u for 1 ≤ k ≤ s, so fk(t)(1 − fk(t)) = t. For each x
defined by Eq. 1 we have P2(x) = −γ1 · f2(γ2 · · · ) with γ1 = r1. Hence, P4(x) =
P2(x)(P2(x) + r1) = −r2

1 f2(1 − f2) = −r2
1γ2 f3 = −r2 f3(γ3 · · · ). We continue in this

fashion to obtain eventually P2s(x) = −r2
s−1γs = −rs, which gives x ∈ Xs.

The formula 1 provides 2s possible values x. Let us show that they are
all different, so any xk ∈ Xs can be represented by means of Eq. 1. Since u



A.P. Goncharov

increases and u(a) < 1 − u(b) for a, b ∈ (0, 1
4 ), we have u(γ1 · u(γ2 · · · γmu(a)) · · · ) <

u(γ1 · u(γ2 · · · γm(1 − u(b)) · · · ). In general, let xi = u(γ1 · u(γ2 · · · γk1(1 − u(γk1+1 ·
u(· · · γk2(1 − u(γk2+1 · · · γkm(1 − u(a)) · · · ) and x j = u(γ1 · u(γ2 · · · γk1(1 − u(γk1+1 ·
u(· · · γk2(1 − u(γk2+1 · · · γkm · u(b)) · · · ), that is the first km functions fk for both
points are identical, whereas fkm+1 = 1 − u for xi and u for x j. The straightforward
comparison shows that xi > x j for odd m and xi < x j otherwise.

There is a simple rule to find, for a given x ∈ Xs, the functions ( fk)
s
k=1 in Eq. 1.

We replace any li,q with γ1γ2 · · · γq. At least for small (γk)
q
k=1 this substitution is

not rough (Lemma 6 below). Then, for x = li1,q1 − li2,q2 + · · · + (−1)m+1lim,qm we have
x ≈ γ1γ2 · · · γq1(1 − γq1+1 · · · γq2(1 − γq2+1 · · · γqm−1(1 − γqm−1+1 · · · γqm)) · · · ). We put u
in front of each γk. Thus, in order to get the exact value of x, we have to take all
fk = u, except fq1+1, · · · , fqm−1+1 that are equal to 1 − u.

For example, X3 = {x9, · · · , x16} = {l1,3, l1,2 − l2,3, l1,1 − l2,2 + l3,3, · · · , 1 − l8,3} =
{u(γ1 · u(γ2 · u(γ3))), u(γ1 · u(γ2 · (1 − u(γ3)))), u(γ1 · (1 − u(γ2 · (1 − u(γ3))))), · · · }.

We use the following properties of the function u:

u(t)
√

1 − 4t ≤ t for 0 ≤ t ≤ 1/4, (2)

u(a t) ≤ a u(t) for 0 ≤ t ≤ 1/4, 0 ≤ a ≤ 1, (3)

u(bt) − u(at) ≤ 2t
√

b − a for 0 ≤ t ≤ 1/4, 0 ≤ a < b ≤ 1 (4)

Indeed, the representation u(t) = 2t
1+√

1−4t
implies Eqs. 2 and 3, whereas Eq. 4

is equivalent to
√

b − a ≤ √
1 − 4at + √

1 − 4bt, which is valid since 0 ≤ 2(1 − b) +
(1 − 4t)(b + a) + 2

√
1 − 4at

√
1 − 4bt.

Lemma 2 Given s, we have min1≤ j≤2s l j,s = l1,s and max1≤ j≤2s l j,s ≤ (1/
√

2)s+1.

Proof Let us show that l1,s ≤ l j,s for each s ∈ N and 1 ≤ j ≤ 2s. By symmetry, we
can suppose that I j,s = [y, x] with x ∈ Xs, y ∈ Xm where 0 ≤ m ≤ s − 1. If m = 0
then I j,s = I1,s, so we can exclude this case. For m ≥ 1, from Eq. 1 we have y =
F(γm) with F(t) = f1(γ1 · f2(γ2 · · · fm−1(γm−1 · fm(t)) · · · ) for some fk ∈ {u, 1 − u}.
Then x = F(γm am) with am = 1 − u(γm+1 · u(γm+2 · · · u(γs)) · · · ).

By the Mean Value Theorem, l j,s = x − y = |F ′(ξ)| · γm · u(γm+1 · · · u(γs)) · · · )
with γm am < ξ < γm. To simplify notations, we write tk = γk · fk+1(γk+1 · · · γm−1 ·
fm(ξ)) · · · ) and τk = γk · u(γk+1 · · · γm−1 · u(ξ)) · · · ) for 1 ≤ k ≤ m − 1. Since u(α) <
1 − u(β) for α, β ∈ (0, 1

4 ), we have τk ≤ tk and | f ′
k(tk)| = (1 − 4tk)−1/2 ≥ (1 −

4τk)
−1/2 = u′(τk) ≥ u(τk)/τk, by Eq. 2.

This gives |F ′(ξ)| = | f
′

1 (t1)| · γ1 · · · | f
′

m−1(tm−1)| · γm−1 · | f
′

m(ξ)| ≥ γ1 · · · γm−1 ·
u(τ1)
τ1

· u(τ2)
τ2

· · · u(τm−1)
τm−1

· u(ξ)
ξ

. Since τk = γk · u(τk+1) for k ≤ m − 2 and τm−1 =
γm−1 · u(ξ), we obtain |F ′(ξ)| ≥ u(τ1)

ξ
and

l j,s ≥ u(τ1)

ξ
· γm · u(γm+1 · · · u(γs)) · · · ) = a · u(τ1)

with a = 1
ξ

· γm · u(γm+1 · · · u(γs)) · · · ). Applying Eq. 3 yields l1,s = u(γ1 ·
u(γ2 · · · γm−1 · u(ξ a)) · · · ) ≤ a u(τ1), that is l1,s ≤ l j,s, which is the desired conclusion.

Our next goal is to estimate l j,s from above. Given s, take j ≤ 2s and I j,s = [y, x].
Suppose, as above, that x ∈ Xs and y ∈ Xm with 0 ≤ m ≤ s − 1. Consider first the
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case I j,s ⊂ I1,1. If j = 1 then l1,s = u(γ1 · u(γ2 · · · u(γs)) · · · ) < 2γ1 · · · 2γs, since u(t) ≤
2t, by Eq. 4 with a = 0, b = 1. Therefore, l1,s < (1/2)s.

If 1 < j ≤ 2s−1 then for some fk ∈ {u, 1 − u} we have, as above, y = u(γ1 ·
f2(γ2 · · · fm−1(γm−1 · fm(γm)) · · · ), x = u(γ1 · f2(γ2 · · · fm−1(γm−1 · fm(γm · am)) · · · )
with the same am as before.

Let us consider two model cases. Let 0 < γ ≤ 1/4. Suppose first b = u(β) > a =
u(α). Here, γ b ≤ 1/8. The derivative u′(ξ) = (1 − 4ξ)−1/2 increases, u′(1/8) = √

2.
Therefore, by the Mean Value Theorem,

u(γ b) − u(γ a) ≤ √
2 γ (b − a).

In the second case, let b = 1 − u(γp · u(γp+1 · · · u(γq−1α)) · · · ), a = 1 − u(γp ·
u(γp+1 · · · u(γq−1β)) · · · ) with 1/2 ≤ α = 1 − u(·) < β < 1. Then 1 − 4 γ b ≥ 1 − b >
γp · γp+1 · · · γq−1/2 as u(t) > t. Here, u(γ b) − u(γ a) < u′(γ b) γ (b − a) ≤

γ
√

2
u(γp · u(γp+1 · · · u(γq−1β)) · · · ) − u(γp · u(γp+1 · · · u(γq−1α)) · · · )√

γp · γp+1 · · · γq−1
.

Arguing as in the first case, we see that the numerator does not exceed the value
(
√

2 γp) · · · (√2 γq−2) [u(γq−1β) − u(γq−1α)]. Therefore,

u(γ b) − u(γ a) <
√

2 · γ · √
2 γp · · · √2 γq−2

u(γq−1β) − u(γq−1α)√
γq−1

.

We proceed to estimate x − y. Since y �= 0, at least one function fk in the
representation of y is 1 − u. Let fp = fq = fr = · · · = fn = 1 − u for some indexes
2 ≤ p < q < r < · · · n ≤ m, whereas all other functions in the representation of y are
equal to u. Thereby, x − y = u(γ1 · u(γ2 · · · u(γp−1(1 − u(γp · · · u(γmam)) · · · ) − u(γ1 ·
u(γ2 · · · u(γp−1(1 − u(γp · · · u(γm)) · · · ). As in the first model case, x − y ≤
√

2γ1 · · ·√2γp−2 [u(γp−1(1 − u(γp · · · u(γmam)) · · · ) − u(γp−1(1 − u(γp · · · u(γm)) · · · )].

We apply the second model case with b = 1 − u(γp · u(γp+1 · · · u(γq−1aq−1)) · · · )
where aq−1 = 1 − u(γq · · · u(γmam)) · · · ) and a = 1 − u(γp · · · u(γq−1bq−1)) · · · ),
b q−1 = 1 − u(γq · · · u(γm)) · · · ). This gives

x − y ≤ √
2γ1 · · ·√2γp−2

√
2γp−1 · √

2 γp · · ·√2 γq−2
u(γq−1bq−1) − u(γq−1aq−1)√

γq−1
.

Repeating this argument for the numerator leads to

u(γq−1bq−1) − u(γq−1aq−1) ≤ √
2γq−1

√
2 γq · · ·√2 γr−2

u(γr−1br−1) − u(γr−1ar−1)√
γr−1

with the corresponding values of br−1 and ar−1. Therefore,

x − y ≤
(√

2γ1 · · ·√2γp−1

)
·
(√

2 γp · · ·√2 γr−2

) u(γr−1br−1) − u(γr−1ar−1)√
γr−1

.
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We continue in this fashion to obtain eventually,

u(γn−1(1 − u(γn · · · u(γmam)) · · · ) − u(γn−1(1 − u(γn · · · u(γm)) · · · )√
γn−1

≤ √
2 γn−1 · · ·√2 γm−1

u(γm) − u(γmam)√
γm

.

For the last numerator we use Eq. 4: u(γm) − u(γmam) ≤ 2 γm
√

1 − am, where 1 −
am = u(γm+1 · u(γm+1 · · · u(γs)) · · · ) ≤ (1/2)s−m, since u(t) ≤ 2t.

Combining these inequalities gives

x − y ≤ (
√

2/4)p−1 (1/
√

2)m−p 2
√

γm (1/
√

2)s−m ≤ (1/
√

2)s+2p−3 ≤ (1/
√

2)s+1,

since p ≥ 2.
Similar arguments apply to the case I j,s ⊂ I2,1 with f1 = 1 − u. 	


4 The Green Function

Here we consider P2s as a polynomial of a complex variable.

Lemma 3 Given z ∈ C and s ∈ N, let ws = 2 r−1
s P2s(z) + 1. Suppose |ws| = 1 + ε for

some ε > 0. Then |ws+1| > 1 + 4 ε.

Proof We have P2s = (ws − 1) rs/2, P2s+1 = P2s(P2s + rs) = (w2
s − 1) r2

s /4 and
ws+1 = (2 γs+1)

−1 (w2
s − 1 + 2 γs+1). Therefore, |ws+1| attains its minimal

value on the set {ws : |ws| = 1 + ε} at the point ws = 1 + ε, so |ws+1| ≥
(2 γs+1)

−1 (2 ε + ε2 + 2 γs+1) > 1 + ε/γs+1 > 1 + 4 ε. 	


Let Ds = {z ∈ C : |P2s(z) + rs/2| < rs/2}. Recall that K(γ ) = ∩∞
s=0 Es with Es =

Ds ∩ R. Let us show that (Ds)
∞
s=1 is a nested family.

Theorem 1 We have Ds ↘ K(γ ).

Proof The embedding Ds+1 ⊂ Ds is equivalent to the implication

|P2s(z) + rs/2| > rs/2 =⇒ |P2s+1(z) + rs+1/2| > rs+1/2,

which we have by Lemma 3.
For each j ≤ 2s the real polynomial P2s is monotone on I j,s and takes values 0 and

−rs at its endpoints. Therefore, Es ⊂ Ds and K(γ ) ⊂ ∩∞
s=0 Ds.

For the inverse embedding, let us fix z /∈ K(γ ). We need to find s with z /∈ Ds.
Assume first z ∈ R. Since Ds ∩ R = Es, the condition z /∈ Es gives the desired s.

Let z = x + i y with y �= 0, x /∈ K(γ ). By the above, x /∈ Ds for some s. All
zeros (c j)

2s

j=1 of the polynomial P2s + rs/2 are real. Therefore, |z − c j| > |x − c j| and

|P2s(z) + rs/2| > |P2s(x) + rs/2| > rs/2, so z /∈ Ds.
It remains to consider the case z = x + i y with y �= 0, x ∈ K(γ ). If |y| ≥ 2 then z /∈

D1. Indeed, |P2(z) + r1/2| ≥ |Re(P2(z) + r1/2)| = y2 − x2 + x − r1/2, which exceeds
r1/2, since 0 ≤ x ≤ 1 and r1 = γ1 < 1/4.
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Let 0 < |y| < 2. By Lemma 2, we can choose s such that max1≤ j≤2s l j,s < y2/2.
Given s, fix k with x ∈ Ik,s = [a, b ]. Here, |P2s(a) + rs/2| = rs/2. Let us show that
|P2s(z) + rs/2| > |P2s(a) + rs/2| by comparison the distances from z and from a to
the point c j.

If j < k then |a − c j| ≤ |x − c j|, which is less than the hypotenuse |z − c j|.
If j = k then |a − ck| < lk,s < y2/2 < |y| ≤ |z − ck|, by the choice of s.
If j > k then c j − a = c j − b + lk,s. Therefore, |c j − a|2 = |c j − b |2 + 2 lk,s(c j −

b + lk,s/2) < |c j − b |2 + 2 lk,s, since c j − b + lk,s/2 < c j − a < 1. As above, 2 lk,s <
y2. It follows that |c j − a|2 < |c j − b |2 + y2 ≤ |c j − x|2 + y2 = |z − c j|2. 	


Corollary 1 The set K(γ ) is polar if and only if R := lims→∞ 2−s log 2
rs

= ∞. If this
limit is f inite and z /∈ K(γ ), then

gC\K(γ )(z) = lim
s→∞ 2−s log |P2s(z)/rs|.

Proof Suppose P ∈ Pn has a leading coefficient an and 
 = {z : |P(z)| > 1}. Then,
clearly, g
(z) = n−1 log |P(z)| with the corresponding Robin constant equals to
n−1 log |an|. In our case, g

C\Ds
(z) = 2−s log |2 r−1

s P2s(z) + 1| and Rs := Rob(Ds) =
2−s log 2

rs
. Since the sequence (Rs)

∞
s=1 increases to R, the infinite value of R gives

polarity of K(γ ).
If R is finite then, by the Harnack Principle (see e.g. [17], Theorem 0.4.10),

g
C\Ds

↗ gC\K(γ ) uniformly on compact subsets of C \ K(γ ). Suppose z /∈ K(γ ).
Then z /∈ Dq for some q ∈ N. Fix ε > 0 with |2 r−1

q P2q(z) + 1| = 1 + ε. By Lemma 3,
|2 r−1

s P2s(z) + 1| > 1 + 4s−q ε, so, for large s, the value |P2s(z)/rs| dominates 1. This
gives the desired representation of gC\K(γ ). 	


Recall that a monic polynomial P ∈ Pn is a Chebyshev polynomial for a compact
set K if the value |P|K is minimal among all monic polynomials of degree n.

The next proposition is a consequence of the Kolmogorov criterion ([11], see also
[9], Theorem 3.2.1). We formulate its polynomial version for the case when K is a
compact subset of C:

Theorem 2 (Kolmogorov) A polynomial P ∈ Pn is a best approximation to f ∈ C(K)
if and only if for each Q ∈ Pn we have maxz∈K0 Re{[ f (z) − P(z)] Q(z)} ≥ 0, where
K0 = {z ∈ K : | f (z) − P(z)| = | f − P|K}.

Proposition 1 The polynomial P2s + rs/2 is the Chebyshev polynomial for K(γ ). 	


Proof In our case, f = z2s
and n = 2s − 1. We want to show that the polynomial P =

f − P2s − rs/2 is a best approximation to f out of Pn. By Theorem 2, it suffices to
show that maxz∈K0 Re{[P2s(z) + rs/2] Q(z)} ≥ 0 for each Q ∈ Pn. Here, K0 consists of
endpoints of the intervals I j,s for 1 ≤ j ≤ 2s. Fix Q ∈ Pn. Then Q(x + iy) = u(x, y) +
i v(x, y) and P2s + rs/2 = A + i B for certain real polynomials u, v, A, B of degree n.
All coefficients of P2s are real, so B(z) = 0 for real z. In particular, B = 0 on K0.

In these notations, Re{[P2s + rs/2] Q} = A u + B v = A u on K0. Suppose, con-
trary to our claim, that A u < 0 on K0. Since A(x, 0) takes values ±rs/2 of different
signs at endpoints of each interval I j,s, the real polynomial u(·, 0) has at least one
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zero on I j,s for 1 ≤ j ≤ 2s. But the degree of u(·, 0) does not exceed 2s − 1. Therefore,
u(·, 0) ≡ 0 and A u |K0 = 0, a contradiction. 	


Example 1 The statement above is valid as well in the limit case, when γs = 1/4
for all s. Here, rs = r2

s−1/4. By arguments of Lemma 1, P2s ≤ 0 on [0, 1] for all
s, so K(γ ) = [0, 1]. Let Tn be the classical Chebyshev polynomial, that is Tn(t) =
cos(n arccos t) for |t| ≤ 1. The leading coefficient of Tn for n ≥ 1 is 2n−1. Therefore,
21−nTn and Qn(z) = 21−2n Tn(2z − 1) are the the n−th Chebyshev polynomials for
[−1, 1] and, respectively, for [0, 1]. In particular, T2(t) = 2t2 − 1. Therefore, Q2(z) =
z2 − z + 1/8 = P2(z) + r1/2. By induction, using the relation T2s+1 = T2(T2s), one
can easily show that P2s(z) + rs/2 = 21−2s+1

T2s(2z − 1) for all s ∈ N.

5 Auxiliary Results

Recall that X0 = {0, 1}, Xk = {x : P2k(x) = −rk} for k ≥ 1, and Ys = ∪s
k=0 Xk is the

set of zeros for P2s+1 .
Since P′

2s = P′
2s−1(2 P2s−1 + rs−1) for s ≥ 2, we have

P′
2s(y) = rs−1 P′

2s−1(y), y ∈ Ys−2; P′
2s(x) = −rs−1 P′

2s−1(x), x ∈ Xs−1. (5)

After iteration this gives

|P′
2s(x)| = rs−1 rs−2 · · · rq |P′

2q(x)| for x ∈ Xq with q < s. (6)

From here, for example, |P′
2s(0)| = rs−1 rs−2 · · · r1.

The identity P2s+1(y) = P2s(y)
∏

xk∈Xs
(y − xk) = P2s(y) (P2s(y) + rs) implies

P2s(y) + rs = ∏
xk∈Xs

(y − xk). Thus,
∏

xk∈Xs

(y − xk) = rs for y ∈ Ys−1. (7)

From now on we make the assumption

γs ≤ 1/32 for s ∈ N. (8)

Each I j,s contains two adjacent basic subintervals I2 j−1,s+1 and I2 j,s+1. Let h j,s =
l j,s − l2 j−1,s+1 − l2 j,s+1 be the distance between them.

Lemma 4 Suppose γ satisf ies Eq. 8. Then the polynomial P2s is convex on I j,s−1. For
1 ≤ j ≤ 2s−1 we have l2 j−1,s + l2 j,s < 4 γs l j,s−1. Thus, h j,s−1 > (1 − 4γs) l j,s−1.

Proof We proceed by induction. If s = 1 then P2 is convex on I1,0 = [0, 1]. Let us
show that l1,1 + l2,1 < 4 γ1. The triangle � with the vertices (0, 0), (1, 0), ( 1

2 , − 1
4 ) is

entirely situated in the epigraph {(x, y) ∈ R2 : P2(x) ≤ y}. The line y = −r1 inter-
sects � along the segment [A, B]. By convexity of P2, we have h1,0 = 1 − l1,1 − l2,1 >
|B − A|. The triangle �1 with the vertices A, B, ( 1

2 , − 1
4 ) is similar to �. Therefore,

1
4 |B − A| = 1

4 − r1. Here, r1 = γ1, and the result follows.
Suppose we have convexity of P2k |I j,k−1 and the desired inequalities for k ≤ s − 1.

Fix j ≤ 2s−1 and x ∈ I j,s−1 = [a, b ]. Then P2s(x) = (x − a)(x − b) g(x), where g(x) =∏n
k=1(x − zk) with n = 2s − 2 and (zk)

n
k=1 = Ys−1 \ {a, b}.
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Hence,

P′′
2s(x) = g(x)

⎡

⎣ 2 + 2
n∑

k=1

2x − a − b
x − zk

+
n∑

k=1

n∑

i=1,i �=k

(x − a)(x − b)

(x − zk)(x − zi)

⎤

⎦ .

Clearly, g|I j,s−1 > 0, |2x − a − b | ≤ l j,s−1, and |(x − a)(x − b)| ≤ 1
4 l2

j,s−1. For con-
vexity of P2s |I j,s−1 we only need to check that 8 ≥ 8 l j,s−1

∑n
k=1 |x − zk|−1 +

l2
j,s−1

∑n
k=1

∑
i �=k |x − zk|−1|x − zi|−1.

Let us consider the basic intervals containing x : I j,s−1 ⊂ Im,s−2 ⊂ Iq,s−3 ⊂ · · · ⊂
I1,0. The interval Im,s−2 contains two zeros of g. For each of them |x − zk| ≥
hm,s−2 > (1 − 4γs−1) lm,s−2 and l j,s−1

|x−zk| < 4γs−1

1−4γs−1
, by inductive hypothesis. The last

fraction does not exceed 1/7. Similarly, Iq,s−3 contains another four zeros of g

with l j,s−1

|x−zk| < 4γs−1 4γs−2

1−4γs−2
≤ 1

7 · 1
8 . We continue in this fashion to obtain l j,s−1

∑n
k=1 |x −

zk|−1 <
∑s−1

k=1 2k · 1
7 · ( 1

8 )k−1 < 8
21 .

In the same way, l2
j,s−1

∑n
k=1

∑
i �=k |x − zk|−1|x − zi|−1 < ( 8

21 )2, which gives
P′′

2s |I j,s−1 > 0. Arguing as above, by means of convexity of P2s |I j,s−1 , it is easy to show
the second statement of Lemma. 	


Let δs = γ1γ2 · · · γs, so r1r2 · · · rs−1 δs = rs.

Lemma 5 Suppose γ satisf ies Eq. 8 and I is the basic interval of the s−th level with
the endpoints y ∈ Ys−1, x ∈ Xs. Then

exp(−16 γs) |P′
2s(y)| < |P′

2s(x)| < |P′
2s(y)| = max

t∈I
|P′

2s(t)|.

Proof The interval I is a subset of some I j,s−1 = [a, b ], where, by Lemma 4, the
polynomial P2s is convex, so P′

2s increases. In addition, P2s(a) = P2s(b) = 0 and, by
Lemma 1, P′

2s has one zero ξ with mint∈I j,s−1 P2s(t) = P2s(ξ) = −r2
s−1/4. The value

P2s(x), that is −rs, is greater than P2s(ξ). Therefore, ξ /∈ I and |P′
2s | attains its

maximal value on I at the endpoint from Ys−1. Thus, |P′
2s(x)| < |P′

2s(y)|.
In order to get the corresponding lower bound, let us assume, without loss of

generality, that Ii,s = [y, x] with y ∈ Ys−1, x = y + li,s ∈ Xs. The point x is a zero of
P2s+1 and P′

2s+1(x) > 0. Therefore,

P′
2s+1(x) = (x − y) ·

∏

yk∈Y ′
s

|x − yk| = (x − y) ·
∏

yk∈Y ′
s

|y − yk| · β,

where Y ′
s = Ys \ {x, y}, β = ∏

yk∈Y ′
s

(
1 + li,s

y−yk

)
. Here,

(x − y) ·
∏

yk∈Y ′
s

|y − yk| =
∏

xk∈Xs

|y − xk|
∏

yk∈Ys−1,yk �=y

|y − yk| = rs |P′
2s(y)|,

by Eq. 7. On the other hand, by Eq. 5, P′
2s+1(x) = rs |P′

2s(x)|, so |P′
2s(x)| = β |P′

2s(y)|.
Let us estimate β from below. We can take into account only yk ∈ Y ′

s with yk > y,
since otherwise the corresponding term in β exceeds 1 and we can neglect it. The
interval I j,s−1 contains two points yk with yk − y > h j,s−1. Lemma 4 yields 1 + li,s

y−yk
>

1 − 8
7 · li,s

li,s−1
> 1 − 8

7 · 4γs.
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For the next four points (let I j,s−1 ⊂ Im,s−2) we have yk − y > hm,s−2 and 1 +
li,s

y−yk
> 1 − 8

7 · li,s

lm,s−2
> 1 − 8

7 · 4γs · 4γs−1 ≥ 1 − 1
7 · 4γs, by Eq. 8.

We continue in this fashion obtaining log β >
∑s

k=1 2k log(1 − 4
7 · 82−kγs). If 0 <

a < 1
4 then log(1 − a) > 4 a log 3

4 > −1.16 a. A straightforward calculation shows that
log β > −16 γs. This gives the desired result. 	


Lemma 6 Let γ satisfy Eq. 8 and x ∈ Xs. Then

exp

(

−16
s∑

k=1

γk

)

· rs/δs < |P′
2s(x)| ≤ |P′

2s |Es = rs/δs

and

δs < li,s < exp

(

16
s∑

k=1

γk

)

· δs for 1 ≤ i ≤ 2s.

Proof Fix x ∈ Xs. By symmetry, let x ∈ I1,1. Suppose, as in the previous lemma, that
x is the right endpoint of some Ii,s. Then x = li1,p − li2,q + · · · + lik−2,m − lik−1,n + lik,s

with 1 ≤ p < q < · · · m < n < s. Clear, i1 = 1. By Lemma 5 and Eq. 6, we conclude
that |P′

2s(x)| < |P′
2s(y)| = rs−1 · rs−2 · · · rn · |P′

2n(y)|.
We apply again Lemma 5 for with y instead of x and z = li1,p − li2,q + · · · +

lik−2,m ∈ Xm instead of y to obtain |P′
2n(y)| < |P′

2n(z)|. By Eq. 6, |P′
2n(z)| = rn−1 ·

rn−2 · · · rm · |P′
2m(z)|. Similar arguments apply for z, et cetera. Finally, |P′

2s(x)| <
rs−1 · rs−2 · · · r1 = rs/δs if p > 1 or |P′

2s(x)| < rs/δs · |P′
2(l1,1)| if p = 1. In the last case,

|P′
2(l1,1)| = 1 − 2l1,1 < 1. This gives the desired upper bound.
The lower bound of |P′

2s(x)| can be obtained in the same manner as above,
by repeated application of Lemma 5 and Eq. 6. In the worst case, when
p = 1, q = 2, · · · , m = s − 2, n = s − 1, we have |P′

2s(x)| > e−16 γs · rs−1 · |P′
2s−1(y)| >

· · · > e−16(γs+···γ2)rs−1 · · · r1 · |P′
2(l1,1)|. Since |P′

2(l1,1)| = √
1 − 4γ1 > e−16γ1 , the result

follows.
The second statement of Lemma can be obtained by the Mean Value Theo-

rem, since P2s(y) = 0, P2s(y + li,s) = −rs. In particular, if x = l1,s and y = 0 then
exp(−16 γs) · rs/δs < |P′

2s(x)|. Therefore,

δs < l1,s < δs · e16 γs < 2 δs.	
 (9)

Corollary 2 If γ satisf ies Eq. 8 and Ii,s ⊂ I j,s−1 then 1
2 γs l j,s−1 < li,s < 4 γs l j,s−1.

Proof The right inequality is given by Lemma 4. To deal with the left one, let us
denote by x, y the endpoints of Ii,s with x ∈ Xs, y ∈ Ys−1.

Suppose first that y ∈ Xs−1. By the Mean Value Theorem, li,s |P′
2s(ξ)| = rs for

some ξ ∈ Ii,s. By Lemma 5, |P′
2s(ξ)| < |P′

2s(y)|, which is rs−1 |P′
2s−1(y)|, by Eq. 5.

Here, |P′
2s−1(y)| < |P′

2s−1(z)|, where z ∈ Ys−2 is another endpoint of I j,s−1. Therefore,
li,s > γs rs−1/|P′

2s−1(z)|. On the other hand, l j,s−1 = rs−1/|P′
2s−1(η)| with η ∈ I j,s−1, so

|P′
2s−1(η)| > |P′

2s−1(z)| e−16 γs−1 , by Lemma 5. For this reason, li,s > γs l j,s−1e−16 γs−1 ≥
1
2 γs l j,s−1.

The case y ∈ Ys−2 is very similar. Here at once y plays the role of z. 	
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Beardon and Pommerenke introduced in [5] the concept of uniformly perfect sets.
A dozen of equivalent descriptions of such sets are suggested in [10, p. 343]. We
use the following: a compact set K ⊂ C is uniformly perfect if K has at least two
points and there exists ε0 > 0 such that for any z0 ∈ K and 0 < r ≤ diam(K) the set
K ∩ {z : ε0r < |z − z0| < r} is not empty.

Theorem 3 The set K(γ ), provided Eq. 8, is uniformly perfect if and only if inf γs > 0.

Proof Suppose K(γ ) is uniformly perfect. The values z0 = 0 and r = l1,s−1 − l2,s in
the definition above imply l1,s + l2,s > ε0 l1,s−1. By Lemma 4, we have 4γs > ε0, so
infs γs ≥ ε0/4, which is our claim.

The converse follows immediately by Corollary 2. 	


6 K(γ ) is Weakly Equilibrium

Here and in the sequel we consider rs in the form rs = 2 exp(−Rs · 2s). Recall
that, for s ∈ N, the value Rs gives the Robin constant for Ds and Rs ↑ R, which
is finite if K(γ ) is not a polar set. In this case, let ρs = R − Rs. Since r0 = 1,
we take ρ0 = R − log 2. In term of (γk)

∞
k=1 we have rs = γs γ 2

s−1 · · · γ 2s−1

1 , so R =
∑∞

k=1 2−k log 1
γk

and ρs = ∑∞
k=s+1 2−k log 1

2γk
. On the other hand, in terms of (ρk)

∞
k=0,

we obtain that γs = rs r−2
s−1 = 1

2 exp[2s(Rs−1 − Rs)] = 1
2 exp[2s(ρs − ρs−1)] and δs =

γ1 · · · γs = 2−s exp(2sρs − ∑s−1
k=1 2kρk − 2 ρ0). Let us show that

2−s log δs → 0 as s → ∞. (10)

Since ρs → 0, we need to prove that
∑s−1

k=1 2k−sρk → 0 as s → ∞. We can assume
without loss of generality that the number s is odd, so s = 2m + 1. Then, by
monotonicity of (ρs), for the sum above we easily have

∑2m
k=1 = ∑m

k=1 +∑2m
k=m+1 ≤

ρ1 2−m + ρm+1, which converges to 0 as m → ∞.
Given s ∈ N, we uniformly distribute the mass 2−s on each I j,s for 1 ≤ j ≤ 2s. We

will denote by λs the normalized in this sense Lebesgue measure on Es, so dλs =
(2s l j,s)

−1dt on I j,s.
If μ is a finite Borel measure of compact support then its logarithmic potential

is defined by Uμ(z) = ∫
log 1

|z−t| dμ(t). Let μK denote the equilibrium measure on a

non-polar set K and
∗→ means convergence in the weak∗ topology.

Let I = [a, b ] with b − a ≤ 1, z ∈ I. By partial integration,

∫

I
log

1

|z − t| dt = b − a − (z − a) log(z − a) − (b − z) log(b − z).

It follows that

(b − a) log
e

b − a
<

∫

I
log

1

|z − t| dt < (b − a) log
2e

b − a
. (11)

Lemma 7 Let γ satisfy Eq. 8 and R < ∞. Then Uλs(z) → R for z ∈ K(γ ) as s → ∞.
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Proof Fix z ∈ K(γ ). Given s, let z ∈ I j,s for 1 ≤ j ≤ 2s. From Eq. 11 we have∫
I j,s

log |z − t|−1 dλs(t) < 2−s (2 + log l−1
j,s ), which is o(1) as s → ∞, by Lemma 6 and

Eq. 10.
To estimate

∑2s

k=1,k �= j

∫
Ik,s

log |z − t|−1 dλs(t) we use P2s(x) = ∏2s

k=1(x − yk) with
yk ∈ Ik,s. As above, take the chain of basic intervals I j,s ⊂ Im,s−1 ⊂ Iq,s−2 ⊂ · · · ⊂
I1,0 containing z. Suppose k corresponds to the adjacent to I j,s subinterval Ik,s

of Im,s−1. Then hm,s−1 ≤ |z − t| ≤ |y j − yk| ≤ |z − t| + l j,s + lk,s. Hence, 1 ≤ |y j−yk|
|z−t| ≤

1 + ε0, with ε0 = l j,s+lk,s

hm,s−1
< 1

7 , by Lemma 4. For this k we get

2−s log |y j − yk|−1 <

∫

Ik,s

log |z − t|−1 dλs(t) < 2−s (log |y j − yk|−1 + ε0).

In its turn, Iq,s−2 ⊃ Im,s−1 ∪ In,s−1, where In,s−1 contains other two intervals of
the s−th level. Let k correspond to any of them. Then |z − t| − l j,s − lk,s ≤ |y j −
yk| ≤ |z − t| + l j,s + lk,s with |z − t| ≥ hq,s−2. Here, 1 − ε1 ≤ |y j−yk|

|z−t| ≤ 1 + ε1 with ε1 =
l j,s+lk,s

hq,s−2
< 8

7 (
l j,s

lm,s−1

lm,s−1

lq,s−2
+ lk,s

ln,s−1

ln,s−1

lq,s−2
) < 8

7 · 2 · 4γs 4γs−1 < 1
7 · 1

4 , by Corollary 2. Repeat-
ing this argument leads to the representation

2s
∑

k=1,k �= j

∫

Ik,s

log |z − t|−1 dλs(t) = 2−s log
2s

∏

k=1,k �= j

|y j − yk|−1 + ε,

where |ε| ≤ 2−s+1(ε0 + 2 ε1 + · · · + 2s−1 εs−1) with εk < 2
7 · 8−k for k ≥ 1. Here we

used the estimate | log(1 + x)| ≤ 2 |x| for |x| < 1/2. We see that |ε| < 2−s.
The main term above is 2−s log |P′

2s(y j)|−1, which is 2−s log(δs/rs) + o(1), by
Lemma 6. Thus,

∫

log |z − t|−1 dλs(t) = 2−s log(δs/rs) + o(1) as s → ∞.

Finally, 2−s log(δs/rs) = Rs + 2−s log δs
2 → R as s → ∞, by Eq. 10. 	


Theorem 4 Suppose γ satisf ies Eq. 8 and Cap(K(γ )) > 0. Then λs
∗→ μK(γ ).

Proof All measures λs have unit mass. By Helly’s Selection Theorem (see for in-
stance [17], Theorem 0.1.3), we can select a subsequence (λsk)

∞
k=1, weak∗ convergent

to some measure μ. Approximating the function log |z − · |−1 by the truncated con-
tinuous kernels (see for instance [17], Theorem 1.6.9), we get lim infk→∞ Uλsk (z) =
Uμ(z) for quasi-every z ∈ C. In particular, by Lemma 7, we have Uμ(z) = R for
quasi-every z ∈ K(γ ). This means that μ = μK(γ ) (see e.g. [17], Theorem 1.3.3). The
same proof remains valid for any subsequence (λs j)

∞
j=1. Therefore, λs

∗→ μK(γ ). 	


Suppose a non-polar Cantor-type set K = ∩∞
s=0 Es with Es = ∪2s

j=1 I j, s is given and
the measure λs is defined as above. Let us say that K is weakly equilibrium if
λs

∗→ μK. On the other hand, let �s be the normalized in the usual sense Lebesgue
measure λ on Es, so d�s = (λEs)

−1dt on Es. We say that K is equilibrium if
�s

∗→ μK. The last means that the Cantor–Lebesgue measure λK coincides with
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the equilibrium measure μK. Of course, in the case of geometrically symmetric
Cantor-type sets, when the lengths of all intervals of the s−th level are the same,
there is no difference between λs and �s and between the introduced features.
Clearly, any compact set K with nonempty interior cannot be equilibrium in any
sense since supp μK ⊂ ∂K. Neither geometrically symmetric Cantor-type sets of
positive capacity are equilibrium. For example, let us consider the set K(α) from [1]
which is constructed by means of the Cantor procedure with ls+1 = lαs for 1 < α < 2.
The values α ≥ 2 give polar sets K(α). Given s ∈ N, let zs = l1 − l2 + · · · + (−1)s+1ls.
Estimating distances |z − t| for z = 0 and z = zs, as in Lemma 7, it can be checked
that Uλs(0) − Uλs(zs) >

∑s−1
k=1 2−k−1 log (lk−1−lk)(lk−1−lk+1)

(lk−1−2lk)(lk−1−lk−lk+1)
. It is easily seen that all

fractions in arguments of log exceed 1. Therefore, for each s there exists a point
zs ∈ K(α) such that Uλs(0) − Uλs(zs) exceeds the constant 1

4 log (1−l1)(1−l2)
(1−2l1)(1−l1−l2)

and
the limit logarithmic potential is not equilibrium. Indeed, if K(α) is not polar, then
it is regular with respect to the Dirichlet problem (see [13]) and UμK(α) must be
continuous in C and constant on K(α).

Here we give the calculation without details, since a much stronger fact is valid
for such sets and, in general, for certain Cantor repellers, where the equilibrium
measure is supported by a set whose Hausdorff dimension is strictly smaller than
the dimension of the whole set (see [4, 10, 12, 21]). Thus, the measures λK and μK

are mutually singular in such cases.
Concerning our case, the question about convergence �s

∗→ μK(γ ) is open. At least
for some irregular cases, when γk = γ1 for all k except γk j = ε j with

∑∞
j=1 2−k j log 1

ε j
<

∞, the measures λK(γ ) and μK(γ ) are different, so K(γ ) is not equilibrium.

Problem Construct, if it is possible, an equilibrium Cantor-type set.

7 Smoothness of g C\K(γ )

We proceed to evaluate the modulus of continuity of the Green function corre-
sponding to the set K(γ ). Recall that a modulus of continuity is a continuous non-
decreasing subadditive function ω : R+ → R+ with ω(0) = 0. Given function f , its
modulus of continuity is ω( f, δ) = sup|x−y|≤δ | f (x) − f (y)|.

In what follows the symbol ∼ denotes the strong equivalence: as ∼ b s means that
as = b s(1 + o(1)) for s → ∞. This gives a natural interpretation of the relation � .

Let γ be as in the preceding theorem. Then, we are given two monotone sequences
(δs)

∞
s=1 and (ρs)

∞
s=1 where, as above, δs = γ1 · · · γs, ρs = ∑∞

k=s+1 2−k log 1
2γk

. We define
the function ω by the following conditions: ω(0) = 0, ω(δ) = ρ1 for δ ≥ δ1. If s ≥ 2
then ω(δ) = ρs + 2−s log δ

δs
for δs ≤ δ ≤ δs−1/16 and ω(δ) = ρs−1 − ks(δs−1 − δ) for

δs−1/16 < δ < δs−1 with ks = 16
15 · 2−s δ−1

s−1 log 8.

Lemma 8 The function ω is a concave modulus of continuity. If γs → 0 then for any
positive constant C we have ω(δ) ∼ ρs + 2−s log C δ

δs
as δ → 0 with δs ≤ δ < δs−1.

Proof The function ω is continuous due to the choice of ks. In addition, ω′(δs−1 +
0) < ks < ω′(δs−1/16 − 0), which provides concavity of ω.
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If γs = 1
2 exp[2s(ρs − ρs−1)] → 0 then 2sρs → ∞ and we have the desired equiva-

lence in the case δs ≤ δ ≤ δs−1/16. Suppose δs−1/16 < δ < δs−1. The identity

ρs−1 = ρs + 2−s log
δs−1

2δs
(12)

yields |ρs + 2−s log C δ
δs

− ω(δ)| < 2−s
[| log 2C δ

δs−1
| + 16

15 log 8 · (
1 − δ

δs−1

)]
< 2−s[| log C| +

8 log 2], which is o(ω) since here ω(δ) > ρs−1 − 2−s log 8. 	


Lemma 9 Suppose γ satisf ies Eq. 8 and Cap(K(γ )) > 0. Let z ∈ C, z0 ∈ K(γ ) with
dist(z, K(γ )) = |z − z0| = δ < 1. Choose s ∈ N such that z0 ∈ I j,s ⊂ I j1,s−1 with l j,s ≤
δ < l j1,s−1. Then gC\K(γ )(z) < ρs + 2−s log 16 δ

δs
.

On the other hand, if l1,s ≤ δ < l1,s−1 then gC\K(γ )(−δ) > ρs + 2−s log δ
δs

.

Proof Consider the chain of basic intervals containing z0: z0 ∈ I j,s ⊂ I j1,s−1 ⊂
I j2,s−2 ⊂ · · · ⊂ I js,0 = [0, 1]. Here, I ji,s−i \ I ji−1,s−i+1 contains 2i−1 basic intervals of the
s−th level. Each of them has certain endpoints x, y with x ∈ Xs, y ∈ Ys−1. Recall that
Ys−1 is the set of zeros of P2s . Distinguish y j ∈ I j,s. Now for a fixed large n we will
express the value |P2n(z)| = ∏2n

k=1 |z − xk| in terms of
∏2s

k=1,k �= j |y j − yk| (compare to
Lemma 7). Clearly, each interval of the s−th level contains 2 n−s zeros of P2n , so we
will replace these 2 n−s points with the corresponding yk.

Let us first consider the product π0 := ∏
xk∈I j,s

|z − xk|. Here, |z − xk| ≤ δ + l j,s <

2 δ, so π0 < (2 δ)2 n−s
.

Let π1 := ∏
xk∈Im,s

|z − xk|, where Im,s is adjacent to I j,s. Then |z0 − xk| ≤ l j1,s−1 =
|y j − ym|, since y j and ym are the endpoints of the interval I j1,s−1. Therefore, |z −
xk| < 2 |y j − ym| and π1 < (2 |y j − ym|)2 n−s

.
In the general case, given 2 ≤ i ≤ s, let πi denote the product of all |z − xk| for

xk ∈ Ji := I ji,s−i \ I ji−1,s−i+1. Suppose xk ∈ Iq,s. Then, |z − xk| ≤ δ + l j,s + |y j − yq| +
lq,s ≤ |y j − yq|(1 + δ+l j,s+lq,s

h j i ,s−i
), since y j and yq belong to different subintervals of the

(s − i + 1)−th level for I ji,s−i. Here, δ
h ji ,s−i

< 8
7

l j1 ,s−1

l j i ,s−i
< 8

7 81−i, by Corollary 2. As in

the proof of Lemma 7, we obtain l j,s+lq,s

h j i ,s−i
< 8

7 · 2 · 8−i. From this,
∏

xk∈Iq,s
|z − xk| ≤

[ |y j − yq| (1 + 80
7 8−i)]2 n−s

. Since Ji contains 2i−1 basic intervals of the s−th level, πi <

[ (1 + 80
7 8−i)2 i−1 ∏

yq∈Ji
|y j − yq| ]2 n−s

.

The product
∏s

i=2(1 + 80
7 8−i)2 i−1

is smaller than 2, as is easy to check.
Therefore, |P2n(z)| = ∏s

i=0 πi < [ 8 · δ · ∏2s

k=1,k �= j |y j − yk| ]2 n−s
. The last product in

the square brackets is |P′
2s(y j)|, which does not exceed rs/δs, by Lemma 6. Hence,

2−n log |P2n(z)| < 2−s log 16 δ
δs

− Rs.

Finally, by Corollary 1, gC\K(γ )(z) = R + limn→∞ 2−n log |P2n(z)|, which yields the
desired upper bound of the Green function.

Similar, but simpler calculations establish the sharpness of the bound. We
have gC\K(γ )(−δ) = R + limn→∞ 2−n log P2n(−δ). Now, P2n(−δ) = ∏s

i=0 πi with
π0 = ∏

xk∈I1,s
(δ + xk) > δ2 n−s

and πi = ∏
xk∈I2,s−i+1

(δ + xk) for i ≥ 1. Suppose
xk ∈ Iq,s ⊂ I2,s−i+1. Then δ + xk > yq − lq,s. Since yq > h1,s−i > 7

8 l1,s−i, we have
δ + xk > yq(1 − 8

7 8−i) and πi > [ (1 − 1
7 81−i)2 i−1 ∏

yq∈I2,s−i+1
yq ]2 n−s

. Therefore,
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P2n(−δ) > [ δ
2

∏2s

k=1 yk]2 n−s = [ δ
2 |P′

2s(0)|]2 n−s = [ δ/δs · rs/2 ]2 n−s
, by Eq. 6. Thus,

2−n log P2n(−δ) > −Rs + 2−s log δ
δs

and gC\K(γ )(−δ) ≥ ρs + 2−s log δ
δs

. 	


Theorem 5 Suppose γ satisf ies Eq. 8 and Cap(K(γ )) > 0. If δs ≤ δ < δs−1 then ρs +
2−s log δ

δs
< ω(gC\K(γ ), δ) < ρs + 2−s log 16 δ

δs
. If γs → 0 then ω(gC\K(γ ), δ) ∼ ω(δ) as

δ → 0.

Proof Fix δ and s with δs ≤ δ < δs−1. By Eq. 9, δs < l1,s < 2 δs < δs−1.
If l1,s ≤ δ < δs−1 then ω(gC\K(γ ), δ) ≥ gC\K(γ )(−δ), so Lemma 9 yields the de-

sired lower bound. If δs ≤ δ < l1,s, then gC\K(γ )(−δ) > ρs+1 + 2−s−1 log δ
δs+1

= ρs +
2−s−1 log 2 δ

δs
, by Eq. 12. Here, 2−s−1 log 2 δ

δs
> 2−s log 2 δ

δs
, as is easy to check.

In order to get the upper bound, it is enough to estimate gC\K(γ )(z) for z ∈ C

with dist(z, K(γ )) = δ. Indeed, the modulus of continuity of gC\K is realized on the
boundary of K (see e.g. 3.6 in [18]).

Let us fix z0 ∈ K(γ ) such that dist(z, K(γ )) = |z − z0|.
Fix m such that z0 ∈ I j,m ⊂ I j1,m−1 for some j with l j,m ≤ δ < l j1,m−1. Then m ≥ s,

since otherwise Lemma 6 gives a contradiction δ < δs−1 ≤ δm < l j,m ≤ δ.
If m = s then, by Lemma 9, the result is immediate.
If m ≥ s + 1 then gC\K(γ )(z) ≤ ρm + 2−m log 16 δ

δm
that does not exceed ρs +

2−s log 16 δ
δs

. Indeed, the function f (δ) = ρs − ρm + (2−s − 2−m) log 16 δ − 2−s log δs +
2−m log δm attains its minimal value on [δs, δs−1) at the left endpoint. Here, f (δs) =
(2−s − 2−m) log 8 + ∑m

k=s+1(2
−k − 2−m) log 1

γk
> 0.

The last statement of the theorem is a corollary of Lemma 8. 	


8 Model Types of Smoothness

Let us consider some model examples with different rates of decrease of (ρs)
∞
s=1.

Recall that for non-polar sets K(γ ) we have R = Rob(K(γ )) = ∑∞
k=1 2−k log 1

γk
.

Here, ρs = ∑∞
k=s+1 2−k log 1

2γk
shows how rapidly Rob(Ds) approximates R. From

Eq. 8 it follows that ρs ≥ 2−s log 16 and R ≥ log 32, so Cap(K(γ )) ≤ 1/32.
If a set K is uniformly perfect, then the function gC\K is Hölder continuous (see

e.g. [10, p. 119]), which means the existence of constants C, α such that

gC\K(z) ≤ C (dist(z, K))α for all z ∈ C.

In this case we write gC\K ∈ Lip α.
By Theorem 3, gC\K(γ ) is Hölder continuous provided γs = const. Now we can

control the exponent α in the definition above. In the following examples we suppose
that dist(z, K(γ )) = δ with δs ≤ δ < δs−1 for large s.

Example 2 Let γs = γ1 ≤ 1
32 for all s. Then δs = γ s

1 , rs = γ 2s−1
1 , R = log 1

γ1
, and

ρs = 2−s log 1
2γ1

. Here, ρs + 2−s log δ
δs

≥ ρs > 2−s = δα
s with α = − log 2

log γ1
. Since δs =

γ1 δs−1 > γ1 δ, we have, by Theorem 5, gC\K(γ )(−δ) > γ α
1 δα. On the other hand,

ω(gC\K(γ ), δ) < ρs + 2−s log 16δ
δs

< δα log 8
γ 2

1
.

Suppose we are given α with 0 < α ≤ 1/5. Then the value γs = 2−1/α for all s
provides gC\K(γ ) ∈ Lip α and gC\K(γ ) /∈ Lip β for β > α.
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The next example is related to the function h(δ) = (log 1
δ
)−1 that defines the

logarithmic measure of sets. Let us write gC\K ∈ Liph α if for some constants C we
have

gC\K(z) ≤ C hα(dist(z, K)) for all z ∈ C.

Example 3 Given 1/2 < ρ < 1, let ρs = ρs for s ≥ s0, where ρ
1−ρ

log 16 < (2 ρ)s0 .
This condition provides γs < 1/32 for s > s0. Suppose γs = 1/32 for s ≤ s0, so we
can use Theorem 5. For large s we have δs = C 2−sμ(2 ρ)s

with μ = exp( 2 ρ−2
2 ρ−1 ) and

some constant C. Let us take α = log(1/ρ)
log(2 ρ)

, so (2ρ)α = 1/ρ. Then hα(δ) ≥ hα(δs) ≥
ε0(2 ρ)−s α = ε0 ρ · ρs−1 for some ε0. From this we conclude that gC\K(γ ) ∈ Liph α
for given α. Evaluation gC\K(γ )(−δs) from below yields gC\K(γ ) /∈ Liph β for β > α.
Now, given α > 0, the value ρ = 2− α

1+α provides the Green function of the exact class
Liph α (compare this to [1, 8]).

Example 4 Let ρs = 1/s. Then γs = 1
2 exp( −2s

s2−s ) < 1/32 for s ≥ 8. As above, all pre-

vious values of γs are 1/32. Here, δs = C 2−s exp
[

2s

s − ∑s−1
k=1

2k

k

]
. Summation by parts

(see e.g. [16], Theorem 3.41) yields δs = C 2−s exp[−2s+1(s−2 + o(s−2))]. From this,
ω(gC\K(γ ), δ) ∼ 1

s ∼ log 2
log log 1/δs

.

Example 5 Here we present Cantor-type sets K(γ ) with “lowest smoothness”
of the corresponding Green function. Given N ∈ N, let FN(t) = log log · · · log t
be the N−th iteration of the logarithmic function. Let ρs = (FN(s))−1 for
large enough s. Here, ρk−1 − ρk ∼ [k · log k · F2(k) · · · FN−1(k) · F2

N(k)]−1. Since
δs = C 2−s exp[− ∑s

k=1 2k(ρk−1 − ρk)], we have, as above, s ∼ log log 1/δs

log 2 . Thus,
ω(gC\K(γ ), δ) ∼ [FN+2(1/δ)]−1.

We see that a slower decrease of (ρs) implies a less smooth gC\K(γ ) and conversely.
If, in examples above, we take γs = 1/32 for s < s0 with rather large s0, then the set
K(γ ) will have logarithmic capacity as close to 1/32, as we wish.

Problem Given modulus of continuity ω, to find (γs)
∞
s=1 such that ω(gC\K(γ ), ·)

coincides with ω at least on some null sequence.

9 Markov’s Factors

For any infinite compact set K ⊂ C we consider the sequence of Markov’s factors
Mn(K) = inf{M : |P′|K ≤ M |P|K for all P ∈ Pn}, n ∈ N. We see that Mn(K) is the
norm of the operator of differentiation in the space (Pn, | · |K). In the case of non-
polar K, the knowledge about smoothness of the Green function near the boundary
of K may help to estimate Mn(K) from above. The application of the Cauchy formula
for P′ and the Bernstein–Walsh inequality yields the estimate

Mn(K) ≤ inf
δ

δ−1 exp[n · ω(gC\K, δ)]. (13)

This approach gives an effective bound of Mn(K) for the cases of temperate growth
of ω(gC\K, ·). For instance, the Hölder continuity of gC\K implies Markov’s property
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of the set K, which means that there are constants C, m such that Mn(K) ≤ Cnm for
all n.

Lemma 10 Suppose γ satisf ies Eq. 8 and Cap(K(γ )) > 0. Given f ixed
s ∈ N, let f (δ) = δ−1 exp[2s(ρk + 2−k log 16 δ

δk
)] for δk ≤ δ < δk−1 with k ≥ 2.

Then inf0<δ<δ1 f (δ) = f (δs − 0) = 4
√

2 δ−1
s exp(2s ρs).

Proof Let us fix the interval Ik = [δk, δk−1). In view of the representation
f (δ) = Cs,k δ2s−k−1, the function f increases for k < s, decreases for k > s, and
is constant for k = s on Ik. An easy computation shows that f (δk+1) < f (δk)
for k ≤ s − 1 and f (δk−1 − 0) < f (δk − 0) for k ≥ s + 1. Thus, it remains to
compare f (δs − 0) and f (δs). Here, f (δs) = 16 δ−1

s exp(2s ρs) exceeds f (δs − 0) =
δ−1

s (16/γs+1)
1/2 exp(2sρs+1) = 4

√
2 δ−1

s exp(2s ρs). 	


Example 6 Let γs = γ1 ≤ 1
32 for s ∈ N. Lemma 10 and Example 2 imply M2s(K(γ )) ≤√

8 · δ−1
s+1 = √

8 γ −1
1 2 s/α, where α is the same as in Example 2.

On the other hand, let Q = P2s + rs/2. Then |Q|K(γ ) = rs/2 and |Q′(0)| = rs/δs, so
M2s(K(γ )) ≥ 2 δ−1

s = 2 · 2 s/α. Now, for each n we choose s with 2s ≤ n < 2s+1. Since
the sequence of Markov’s factors increases,

c n1/α ≤ M2s(K(γ )) ≤ Mn(K(γ )) ≤ M2s+1(K(γ )) ≤ C n1/α

with c = 21−1/α, C = γ −1
1 23/2+1/α. Given m ∈ [5,∞), the value γs = 2−m for all s

provides the set K(γ ) with the best Markov’s exponent m(K(γ )) = m = 1/α.

However, the estimate Eq. 13 may be rather rough for compact sets with less
smooth moduli of continuity of the corresponding Green’s functions. For instance,
let us consider the set K(γ ) with

∑∞
k=1 γk < ∞. Since γk = 1

2 exp[2k(ρk − ρk−1)], we
have 2k(ρk−1 − ρk) → ∞ and 2k ρk → ∞. By Lemma 10, the exact value of the right
side in Eq. 13 for n = 2s is 4

√
2 δ−1

s exp(2s ρs), whereas M2s(K(γ )) ∼ 2 δ−1
s , which will

be shown below by means of the Lagrange interpolation. It should be noted that the
set K(γ ) may be polar here.

Let us interpolate P ∈ P2s at zeros (xk)
2s

k=1 of P2s and at one extra point l1,s.
Then the fundamental Lagrange interpolating polynomials are L∗(x) = −P2s(x)/rs

and Lk(x) = (x−l1,s)P2s (x)
(x−xk)(xk−l1,s)P′

2s (xk)
for k = 1, 2, · · · , 2s. Let �s denote supx∈K(γ )[ |L′∗(x)| +

∑2s

k=1 |L′
k(x)| ]. For convenience we enumerate (xk)

2s

k=1 in increasing way, so xk ∈ Ik,s

for 1 ≤ k ≤ 2s.

Lemma 11 Suppose γ satisf ies Eq. 8 and
∑∞

k=1 γk < ∞. Then �s ∼ 2 δ−1
s .

Proof We use the following representation:

L′
k(x) = P′

2s(x)

(xk − l1,s)P′
2s(xk)

+ P2s(x)

(x − xk)P′
2s(xk)

2s
∑

j=1, j�=k

1

x − x j
=: Ak + Bk. (14)

In particular, L′
1(0) = −l−1

1,s − ∑2s

j=2 x−1
k . By Eq. 6, |L′∗(0)| = δ−1

s , so �s > |L′∗(0)| +
|L′

1(0)| > δ−1
s + l−1

1,s > δ−1
s (1 + e−16γs), by Eq. 9. Thus, �s � 2 δ−1

s .
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We proceed to estimate �s from above. Lemma 6 gives the uniform bound
|L′∗(x)| ≤ δ−1

s .

Let us examine separately the sum
∑2s

k=1 |Ak|, where Ak are defined by Eq. 14. Let
C0 = exp(16

∑∞
k=1 γk). Then, by Lemma 6, |P′

2s(x)| ≤ |P′
2s(0)| = rs/δs < C0|P′

2s(xk)|
for x ∈ K(γ ). Therefore, |A1| ≤ l−1

1,s < δ−1
s and

∑2s

k=2 |Ak| < C0
∑2s

k=2(xk − l1,s)
−1.

Here,
∑2s

k=2(xk − l1,s)
−1 < 2 l−1

1,s−1, as is easy to check. Thus,
∑2s

k=1 |Ak| < δ−1
s +

2C0δ
−1
s−1.

In order to estimate the sum of the addends Bk, let us fix x ∈ K(γ ) and 1 ≤ m ≤ 2s

such that x ∈ Im,s. Suppose first that k �= m. Then

2s
∑

j=1, j�=k

∣
∣
∣
∣

P2s(x)

x − x j

∣
∣
∣
∣ < 2

∣
∣
∣
∣

P2s(x)

x − xm

∣
∣
∣
∣ ≤ 2 |P′

2s(ξ)| (15)

with a certain ξ ∈ Im,s. Indeed, if x = xm then this sum is exactly |P′
2s(xm)|, so ξ = xm.

Otherwise we take the main term out of the brackets:

∣
∣
∣
∣

P2s(x)

x − xm

∣
∣
∣
∣

⎡

⎣1 +
2s

∑

j=1, j�=k, j�=m

∣
∣
∣
∣
x − xm

x − x j

∣
∣
∣
∣

⎤

⎦ .

Here the sum in the square brackets can be handled in the same way as in the proof
of Lemma 4. Let Im,s ⊂ Iq,s−1 ⊂ Ir,s−2 ⊂ · · · . Then [ · · · ] ≤ 1 + lm,s(h−1

q,s−1 + 2h−1
r,s−2 +

· · · ) ≤ 1 + 8
7 lm,s(l−1

q,s−1 + 2l−1
r,s−2 + · · · ) < 1 + 8

7 (4γs + 2 · 4γs4γs−1 + · · · ) < 2.
On the other hand, by Taylor’s formula, P2s(x) = P′

2s(ξ)(x − xm) with ξ ∈ Im,s,
which establishes Eq. 15.

Therefore,

2s
∑

k=1,k �=m

|Bk| <

2s
∑

k=1,k �=m

2 C0

|x − xk| .

As above,
∑2s

k=1,k �=m |Bk| < 2 C0(h−1
q,s−1 + 2h−1

r,s−2 + · · · ) < 4 C0 h−1
q,s−1 < 5 C0 l−1

q,s−1.

It remains to consider Bm = P2s (x)
(x−xm)P′

2s (xm)

∑2s

j=1, j�=m
1

x−x j
. Let us take the interval

In,s adjacent to Im,s, so In,s ∪ Im,s ⊂ Iq,s−1. Then, as above,
∑2s

j=1, j�=m |x − x j|−1 <

2 |x − xn|−1 and |Bm| < 2 C0 |x − xn|−1 < 3 C0 l−1
q,s−1, since |x − xn| > hq,s−1.

This gives
∑2s

k=1 |Bk| < 8 C0 l−1
q,s−1 < 8 C0 δ−1

s−1, by Lemma 6. Finally, �s < 2 δ−1
s +

10 C0 δ−1
s−1 = δ−1

s (2 + 10 C0 γs) ∼ 2 δ−1
s . 	


Theorem 6 With the assumptions of Lemma 11, M2s(K(γ )) ∼ 2 δ−1
s .

Proof On the one hand, |P2s + rs/2|K(γ ) = rs/2 and |P′
2s(0)| = rs/δs, so M2s(K(γ )) ≥

2 δ−1
s .
On the other hand, for each polynomial P ∈ P2s and x ∈ K(γ ) we have |P′(x)| ≤

|P|K(γ ) �s, and the theorem follows. 	


We are now in a position to construct a compact set with preassigned growth
of subsequence of Markov’s factors. Suppose we are given a sequence of positive
terms (M2s)∞s=0 with

∑∞
s=0 M2s/M2s+1 < ∞. The case of polynomial growth of (Mn)
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was considered before, so let us assume that C nm M−1
n → 0 as n → ∞ for fixed C

and m. Fix s0 such that M2s/M2s+1 ≤ 1/32 for s ≥ s0 and M2s0 ≥ 2 · 25s0 .
Let us take γs = M2s−1/M2s for s > s0 and γs = (2/M2s0 )1/s0 for s ≤ s0. Then γs ≤

1/32 for all s and we can use Theorem 6. Here, δs = 2/M2s , so M2s(K(γ )) ∼ M2s .
It should be noted that the growth of (Mn(K)) is restricted for a non-polar

compact set K ([6], Proposition 3.1). It is also interesting to compare Theorem 6
with Theorem 2 in [19].
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